EPID 765 Pharmacoepidemiology

Lesson 10

Instrumental Variables

(some slides adapted from Alan Brookhart)

© 2019 by Til Stürmer. All rights reserved.

1

Motivating Example: **Observational Study of Non-steroidal Anti-**Inflammatory Drugs and GI bleeding risk in an elderly population

- · Compare short-term risk of GI outcomes between - COX-2 selective NSAIDs
 - Non-selective NSAIDs
- Coxibs are slightly less likely to cause GI problems

2

- · Coxibs are likely to be selectively prescribed to patients at increased GI risk
- · Classic problem: confounding by indication

2

1

Characteristics of Medicare New User Cohort Variable Coxib NS NSAID Female Gender 86% 81% Age > 75 75% 65% Charlson Score>1 76% 71% History of Hospitalization 31% 26% History of Warfarin Use 13% 7% History of Peptic Ulcer Disease 4% 2% History of GI Bleeding 2% 1% Concomitant GI drug use 5% 4% History GI drug use 27% 20% History of Rheumatoid Arthritis 5% 3% History of Osteoarthritis 49% 33%

3

Unmeasured Indications for COX-2 Treatment Cox-2 selectively prescribed to patients at risk of GI complications · Many GI risk factors are unmeasured in health care claims data files - Tobacco use - BMI / Obesity - Alcohol consumption - Aspirin & warfarin use - Complaints to MD about stomach problems

4

Natural Experiment / Instrumental Variable (IV) Methods

- · Natural experiment creates an allocation of exposure similar to a randomized study
- IV can be used to bound and estimate treatment effects in the presence of a natural experiment (even when confounders are unmeasured)
- IV methods depend on the existence of an instrumental variable ("instrument")

What Can We Do About These?

- Sensitivity analysis - Requires assumptions about distributions of unknown confounders
- External adjustment, two-stage designs, multiple imputation, propensity score calibration
- · Instrumental variable methods

5

Classic IV estimator is a rescaled ITT estimator $\hat{\alpha}_{\rm IV} = \frac{\hat{E}[Y \,|\, Z=1] - \hat{E}[Y \,|\, Z=0]}{\hat{E}[X \,|\, Z=1] - \hat{E}[X \,|\, Z=0]}$ Y is outcome Z is instrument X is received treatment • Numerator is the intention to treat (ITT) estimate of the risk difference Denominator is estimate of the effect of the instrument on treatment on the risk difference scale

13

Last	Current Prescription (Actual Treatment)	
NSAID		
Prescription (IV)	Coxib X=1	Non-Selective NSAID X=0
Coxib Z=1	(73%)	(27%)
Non-Selective NSAID Z=0	(50%)	(50%)

15

Other Examples of Preference-Based IVs

- Explicit clinician preference (Korn, Stat. Sci.)
- Clinic, hospital as IV (Johnston, J Clin Epi)
- Geographic region as instrument (Wen, J Clin Epi, Brooks et al, HSR, Stuckel T, et. al JAMA)
- · Dialysis clinic
- -> All attempt to estimate treatment effects by using difference in practice patterns as a quasi-experiment

17

Variable	Coxib Pref Z=1	NS NSAID Pref Z=0
Female Gender	84%	84%
Age > 75	73%	72%
Charlson Score > 1	75%	73%
History of Hospitalization	29%	27%
History of Warfarin Use	12%	10%
History of Peptic Ulcer Disease	3%	3%
History of GI Bleeding	1%	1%
Concomitant GI drug use	5%	5%
History GI drug use (e.g., PPIs)	25%	24%
History of Rheumatoid Arthritis	4%	4%
History of Osteoarthritis	45%	41% 14

Calendar Time IVs

- New chemotherapy (FOLFOX) shown to be superior to standard therapy (5-FU) in patients with stage III colon cancer
- New therapy more aggressive (neutropenia, neuropathy)
- Few patients over age 75 enrolled in RCT
- Majority of patients with stage III colon cancer older adults (age > 70)
- CER in older adults important, but likely confounding by frailty

19

20

19

