

-	
	,
-	۰.
-	

Co	ndit	ion	ing	0	n IV in	Pra	ctio	ce	
Table 3. Effect of outcon tion criterion	ne-association	cut-point us	ed as variable	e selec-	Table 3. Effect of outcon tion criterion	ne-association	cut-point us	ed as variable	selec-
Model	PS Chara	teristics	Outco effect est	me imate [‡]	Model	PS Chara	teristics	Outco effect esti	me imate [‡]
	N covariates	C statistic	Estimate	HR		N covariates	C statistic	Estimate	HR
Mortality					Hip fracture				
Non-parsimonious	202	0.91	-0.18	0.83	Non-parsimonious	201	0.91	-0.32	0.72
Outcome +/- 5%	181	0.91	-0.20	0.82	Outcome +/- 5%	177	0.90	-0.37	0.69
Outcome +/- 7.5%	172	0.90	-0.21	0.81	Outcome +/-7.5%	170	0.90	-0.36	0.70
Outcome +/- 10%	163	0.90	-0.21	0.81	Outcome +/- 10%	160	0.90	-0.36	0.70
Outcome +/- 12.5%	157	0.90	-0.22	0.81	Outcome +/- 12.5%	151	0.90	-0.37	0.69
Outcome +/- 15%	151	0.90	-0.22	0.80	Outcome +/-15%	146	0.90	-0.38	0.68
Outcome +/- 17.5%	149	0.90	-0.22	0.81	Outcome +/- 17.5%	137	0.89	-0.37	0.69
Outcome +/- 20%	144	0.90	-0.20	0.82	Outcome +/- 20%	121	0.89	-0.37	0.69
+ glaucoma diagnosis					+ glaucoma diagnosis				
Outcome +/- 20%	143	0.82	-0.18	0.84	Outcome +/- 20%	120	0.81	-0.27	0.76
Outcome +/- 22.5%	139	0.81	-0.17	0.84	Outcome +/- 22.5%	108	0.81	-0.31	0.74
Outcome +/- 25%	135	0.81	-0.17	0.84	Outcome +/-25%	100	0.81	-0.28	0.75
Outcome +/- 27.5%	130	0.81	-0.18	0.83	Outcome +/- 27.5%	91	0.80	-0.35	0.71
Outcome +/- 30%	127	0.81	-0.19	0.83	Outcome +/- 30%	87	0.80	-0.35	0.71
Patrick et al. in ph	The imp armaco	olicatio epider	ns of p niology	rope : an	nsity score varia empirical illustra	able sel ation. Pl	ection DS 20	strateg 11	ies

Table 1. Baseline Demographic Characteristics for the IMRT vs CRT Comparis					
	Before	Before Propensity Weightin			
Characteristics	IMRT (n = 6666)	CRT (n = 6310)			
Year of radiation 2002	448 (6.7)	2402 (38.1) 7			
2003	917 (13.8)	1846 (29.3)			
2004	1334 (20.0)	1149 (18.2)			
2005	1841 (27.6)	601 (9.5)			
2006	2126 (31.9)	312 (4.9)			

7

Bross IDJ. Spurious effects from an extraneous variable. J Chron Dis 1966 – notation from Schneeweiss et al

9

Myers et al. Effects of Adjusting for Instrumental Variables on Bias and Precision of Effect Estimates. AJE 2011

High Dimensional Propensity Score

- Data driven approach for covariate creation and selection
- Developed and applied in claims data
- Each code is a potential covariate
- Codes with a prev >2% (<98%) are retained
- Estimate association with treatment and outcome (conditioning on treatment)
- Calculate confounding using Bross equation
- Rank according to magnitude of confounding
- Select certain number of codes into PS – Within and across data dimensions

