

Summary Scores

- Reduce dimensionality of confounders
- Peters 1941, Belson 1965, Cornfield 1971
 - Optimize matching (dimensionality)
 - Assess treatment effect heterogeneity
 - Construct validity (ability to predict outcome)
- Miettinen 1976
 - Disease and exposure risk score
- Rosenbaum & Rubin 1983
 - Exposure risk score = propensity score
 - Balancing propertiesCausal implications
 - Causal impli
 Estimation
 - Estimation
 Implementation
 - Implementatio

7

- Tend to have same distribution of covariates used to estimate PS (in expectation, large N!)
- Are exchangeable
- Unconfounded risk comparisons (RR, RD)

8

9

PS Advantages:													
2. Delect freatment Barners													
	Propensity quintile												
% with in last 12 mo	1	2	3	4	5								
Nursing home stay	82	46	24	12	5								
Cardiac arrhythmias	27	22	19	16	14								
Congestive heart failure	38	29	24	22	21								
Dementia	31	10	3	1	.5								
COPD	26	23	21	18	14								
nitiation of lipid lowering therapy in enrollees in New Jersey benefits programs age 65+ (Glynn et al, Basic Clin Pharmacol Toxicol 2006) 13													

PS Advantages: 4. Report Covariate Balance											
Entire cohort Matched cohort											
	Estr	ogen	Comparator		Estrogen		Comparator				
			drugs				drugs				
N	7,	824	37,425		6,957*		6,957				
Age (years), mean (SD)	70.9	(10.4)	79.0	(8.3)	72.7	(9.3)	72.8	(9.3)			
White race	5,822	(74.4)	37,912	(83.8)	5,413	(77.8)	5,415	(77.8)			
Nursing home	388	(5.0)	4,540	(12.1)	374	(5.4)	355	(5.1)			
Diagnoses prior year											
Myocardial infarction	178	(2.3)	1,248	(3.3)	173	(2.5)	157	(2.3)			
Ischemic stroke	207	(2.7)	2,186	(5.8)	206	(3.0)	204	(2.9)			
PTCA	141	(1.8)	691	(1.9)	128	(1.8)	126	(1.8)			
CABG	31	(0.4)	275	(0.7)	31	(0.5)	26	(0.4)			
Combined prior CVD	467	(6.0)	3,704	(9.9)	450	(6.5)	449	(6.5)			
Angina	1,009	(12.9)	5,870	(15.7)	931	(13.4)	909	(13.1)			
Congestive heart failure	1,097	(14.0)	9,970	(26.6)	1,056	(15.2)	1,044	(15.0)			
Hypertension	5,385	(68.8)	28,731	(76.8)	4,940	(71.0)	4,932	(70.9)			
Diabetes	1,979	(25.3)	12,435	(33.2)	1,821	(26.2)	1,794	(2558)			
Cancer	600	(7.7)	4,623	(12.4)	564	(8.1)	549	(7.9)			

15

PS Advantages: 6. Causal Contrasts

- Most multivariable models assume uniform treatment effects
- In presence of treatment effect heterogeneity (non-uniform effects, effect-measure modification)
 Models assuming uniform effects invalid
- Results do not pertain to any definable population
- Stratum-specific effect estimates valid
- But what about overall effect?
 - Overall estimates based on standardization and weighting valid in presence of heterogeneous effects
 Because they apply to defined populations

Conclusions PSs

- 1) No theoretical/practical evidence for intrinsically better control for confounding compared with outcome models
- 2) Great for rare outcomes and prevalent exposures Help us to think about treatment barriers, timing of confounding, and populations (causal contrasts)
- 4) Importance of variable selection
 - _
 - Avoid entering variables not associated with outcome Report % of exposed for whom unexposed matches were found _
- 5) Look for non-uniform effects over range of PS

 - Use matching, weighting
 Discuss residual confounding vs. treatment heterogeneity
 Consider range restrictions, trimming
- Implementation of PS (modeling, stratification, matching, weighting) minor issue given uniform effects 31