

1

Collapsibility Rules

- Notation:
- Independent of = \Perp
- Conditional on = |
- Tables are collapsible for RR or RD if either
- X \Perp E

Covariate is independent of exposure =
Exposed and unexposed are exchangeable or
$-\mathrm{X} \Perp \mathrm{Y} \mid \mathrm{E}$
Covariate is not a risk factor for the outcome in the unexposed

3

Either/or of Collapsibility Rule:

2 Ways to Address Confounding

5

Are Stratified Tables Collapsible?

Example:

- $E=$ inhaled beta agonists (yes/no)
- Y = Asthma mortality (yes/no)
- $\mathrm{X}=$ Asthma severity (high vs. low)

2

Check Collapsibility Rules

Note: Collapsibility requires only one condition to be true Confounding requires both conditions to be false 4

4

Exchangeability in Cohort Studies

- Randomization
- Matching
- Weighting (e.g., Inverse Probability of Treatment Weighting [IPTW])
- Restriction

Lead to unconfounded "crude" RR and RD in defined populations
Assumption of no unmeasured confounding (more plausible with randomization!)

6

Summary Scores

- Reduce dimensionality of confounders
- Peters 1941, Belson 1965, Cornfield 1971
- Optimize matching (dimensionality)
- Assess treatment effect heterogeneity
- Construct validity (ability to predict outcome)
- Miettinen 1976
- Disease and exposure risk score
- Rosenbaum \& Rubin 1983
- Exposure risk score = propensity score
- Balancing properties
- Causal implications
- Estimation
- Implementation

7

Example Propensity Score

- Estimate probability of exposure based on covariates:
- $\mathrm{pE}(\mathrm{X}=0)=800 / 8,000=0.1$
$-\mathrm{pE}(\mathrm{X}=1)=1,000 / 2,000=0.5$
- Predicted probability for each observation = PS

Propensity Score Implementation

- Sub-classification
- Stratification into e.g., quintiles, deciles, 50-100
- Individual matching
- Exchangeable pairs of exposed and unexposed
- Weighting
- Inverse probability of treatment (IPTW)
- Others (e.g. SMR, matching, overlap)
- Modeling
- Control for PS in outcome model
- Least appealing (doubly un-robust!)

PS Advantages:
 1. Many Covariates \& Rare Outcome

- Rule of thumb: 10 outcomes per covariate
- Recent studies: closer to 6
- If less: small sample bias
- Bias away from 0 with every additional covariate
- Easily misinterpreted as confounding
- No need for outcome model with PS
- Assuming enough exposed (or unexposed, whichever is the smaller group) we can
- Control for many covariates (fit a rich PS model)
- Without running into small sample bias

PS Advantages: 2. Detect Treatment Barriers

	Propensity quintile				
\% with in last 12 mo	1	2	3	4	5
Nursing home stay	82	46	24	12	5
Cardiac arrhythmias	27	22	19	16	14
Congestive heart failure	38	29	24	22	21
Dementia	31	10	3	1	.5
COPD	26	23	21	18	14

Initiation of lipid lowering therapy in enrollees in New Jersey benefits programs age 65+ (Glynn et al, Basic Clin Pharmacol Toxicol 2006) ${ }^{13}$

13

PS Advantages: 4. Report Covariate Balance

15

PS Advantages:
 6. Causal Contrasts

- Most multivariable models assume uniform treatment effects
- In presence of treatment effect heterogeneity (non-uniform effects, effect-measure modification)
- Models assuming uniform effects invalid
- Results do not pertain to any definable population
- Stratum-specific effect estimates valid
- But what about overall effect?
- Overall estimates based on standardization and weighting valid in presence of heterogeneous effects
- Because they apply to defined populations

PS Advantages:

3. Timing of Covariates and Exposure

- Prediction of exposure can only be made on things prior to exposure (Yogi Berra: it is difficult to make predictions, especially about the future)
- In pharmacoepidemiology often "new user"
- Predict initiating exposure as function of covariates prior to initiation
- Do not include anything after initiation
- Not relevant for prediction
- May be affected by exposure (bias!)

14

16

Causal Contrasts

- PS matching and weighting allow us to estimate causal contrasts based on counterfactuals:
- PS matching/SMR weighting:
- What would have happened to treated if they had been untreated?
- ATT: average treatment effect in the treated
- Inverse probability of treatment weighting (IPTW)
- What would have happened if everyone had been treated vs. no one had been treated
- ATE: average treatment effect in the entire population
- Same as RCT

19

21

23

ATT (SMR) Weighted Estimate

- All treated $w=1$
- All untreated $w=P S /(1-P S)$

$-\mathrm{sw}_{00}=(\mathrm{PS}) /(1-\mathrm{PS})$	$=0.1 /(1-0.1)$	$=0.1111$
$-\mathrm{Sw}_{10}=1$	$=1$	$=1.0$
$-\mathrm{Sw}_{01}=(\mathrm{PS}) /(1-\mathrm{PS})$	$=0.5 /(1-0.5)$	$=1.0$
$-\mathrm{Sw}_{11}=1$	$=1$	$=1.0$

- Multiply all cells (observations!) by these weights
- Collapse tables, calculate RR from collapsed table

Propensity Score Matching / SMR Weighting $w(E=0, X=0)=0.1111 \quad w(E=1, X=0)=1 \quad w(E=0, X=1)=1$

22

IPTW Estimate

- Weight = inverse probability of actual exposure
- Stabilized: times marginal prevalence of actual exposure
$-s w_{00}=\left(1-P_{E}\right) /(1-P S)=(1-0.18) /(1-0.1)=0.9111$
$-\mathrm{sw}_{10}=\left(\mathrm{P}_{\mathrm{E}}\right) /(\mathrm{PS})=0.18 / 0.1=1.8$
$-\mathrm{sW}_{01}=\left(1-\mathrm{P}_{\mathrm{E}}\right) /(1-\mathrm{PS})=(1-0.18) /(1-0.5)=1.64$
$-\mathrm{sw}_{11}=\left(\mathrm{P}_{\mathrm{E}}\right) /(\mathrm{PS})=0.18 / 0.5=0.36$
- Multiply all cells (observations!) by these weights
- Collapse tables, calculate RR from collapsed table

Inverse Probability of Treatment Weighting

24

25

27

29

26

Practical Issues: Variable Selection

- Simulation study with 1 confounder \& 2 different non-confounders
- 1 predicting exposure but not outcome (i.e., an instrumental variable)
- 1 predicting outcome but not exposure
- Confounder (X_{1}) needs to be in PS (dah)
- Predictor of exposure $\left(\mathrm{X}_{3}\right)$
- Reduced efficiency
- Increased bias if confounder is not in model (unmeasured confounder)
- Predictor of outcome (X_{2})
- Increased efficiency

Brookhart MA, Schneeweiss S, Rothman KJ,.Glynn RJ, Avorn J, Stürmer T. AJE 2006
28

Method	hich Matching				Algorithm?			MSE
	Mean \% of cases matched	Mean treatment effect	Relative bias	MSE	Mean \% of cases matched	Mean treatment effect	Relative bias	
Unmatched		9.90	890\%	80.052		9.89	889\%	79.543
0.2 SD logit PS	91.7	1.03	3\%	0.279	81.8	1.05	5\%	0.143
0.6 SD logit PS	95.5	1.24	24\%	0.326	87.6	1.47	47\%	0.371
$5 \rightarrow 1$ digit	90.1	1.07	7\%	0.311	80.4	1.00	0\%	0.163
0.005 caliper	78.3	1.01	1\%	0.382	71.8	0.99	-1\%	0.199
0.01 caliper	83.9	1.00	0\%	0.339	76.6	0.98	-2\%	0.170
0.02 caliper	87.7	1.00	0\%	0.310	79.2	0.99	-1\%	0.155
0.03 caliper	89.3	1.00	0\%	0.296	80.1	1.00	0\%	0.150
0.1 caliper	92.5	1.06	6\%	0.278	82.7	1.12	12\%	0.155
$P_{E}=0.10 \quad P_{E}=0.20$								

Peter Austin, Biometrical Journal 2009; 1,000 simulation runs Note: tradeoff \%matched vs. bias

Conclusions PSs

1) No theoretical/practical evidence for intrinsically better control for confounding compared with outcome models
2) Great for rare outcomes and prevalent exposures
3) Help us to think about treatment barriers, timing of confounding, and populations (causal contrasts)
4) Importance of variable selection

- Avoid entering variables not associated with outcome
- Report \% of exposed for whom unexposed matches were found

5) Look for non-uniform effects over range of PS

- Use matching, weighting
- Discuss residual confounding vs. treatment heterogeneity - Consider range restrictions, trimming

6) Implementation of PS (modeling, stratification, matching, weighting) minor issue given uniform effects
